
Program-Adaptive Mutational Fuzzing

Sang Kil Cha, Maverick Woo, and David Brumley
Carnegie Mellon University

Pittsburgh, PA

{sangkilc, pooh, dbrumley}@cmu.edu

Abstract—We present the design of an algorithm to maximize
the number of bugs found for black-box mutational fuzzing given
a program and a seed input. The major intuition is to leverage
white-box symbolic analysis on an execution trace for a given
program-seed pair to detect dependencies among the bit positions
of an input, and then use this dependency relation to compute
a probabilistically optimal mutation ratio for this program-seed
pair. Our result is promising: we found an average of 38.6% more
bugs than three previous fuzzers over 8 applications using the
same amount of fuzzing time.

I. INTRODUCTION

Mutational fuzzing [47] (a.k.a. black-box mutational
fuzzing) is one of the most effective testing methodologies
in finding security bugs and vulnerabilities in Commercial Off-
The-Shelf (COTS) software. It has been a huge success in
practical security testing and it has been widely used by major
software companies such as Adobe [51] and Google [49] for
quality assurance purposes [48].

The effectiveness of fuzzing largely depends on fuzz
configuration [53], which is the set of parameters for running
a fuzzer. Recent studies [39, 44], for example, showed that the
number of bugs found for a single program given the same
computing resources may vary significantly depending on the
seed files used. The key challenge is how to find a combination
of fuzzing parameters that maximizes the number of bugs found
given a limited resource.

The state of the art for maximizing the fuzzing outcome
is to search over the parameter space of fuzzing [26, 53],
which is called Fuzz Configuration Scheduling (FCS). That
is, fuzzers explore possible combinations of parameters, and
exploit the partial information obtained from the exploration to
maximize the fuzzing outcome. This is the classic “exploration
vs. exploitation” trade-off, and is often stated as a Multi-Armed
Bandit (MAB) problem [5] as noted in [53].

Unfortunately, FCS is challenging when the parameter
space is large because there are too many possible parameter
combinations to consider. For example, the mutation ratio—the
rate between the number of bits to modify and the number of
total bits of a seed, which is used to confine the Hamming
distance from the seed to generated test cases—is a continuous
parameter, and thus it can have arbitrary many values. The
key question is how to discretize the continuous parameter
(mutation ratio); in what granularity should we discretize the
parameter? This problem has been left open in [53].

Current mutational fuzzers circumvent this problem by
selecting just a single mutation ratio, or by using random
ratios from a range. However, there is a fundamental challenge

in the existing methods: they all involve either manual or non-
adaptive parameter selection. First, an analyst has to choose
the fuzzing parameters based on their expertise. For example,
zzuf [30] runs with either a single or a range of mutation ratios,
but the analyst must specify those parameters. Second, if not
manual, the parameters are derived non-adaptively regardless
of the program under test. BFF [26], for instance, splits a set
of all possible nonzero mutation ratios into a predefined set
of intervals, and performs scheduling (FCS) over the intervals.
FuzzSim [53] and zzuf uses a predefined mutation ratio if
a user does not specify a value. AFL-fuzz (American Fuzzy
Lop) [58] also employs several bit-flipping mutation strategies
that only mutate a fixed number of bits, e.g., flip only a single
random bit, regardless of the program under test.

The key question motivating our research is—can adaptive
mutation ratio selection help in maximizing the bug finding rate
of mutational fuzzing for a given program and a time limit?
If so, can we automatically find such a mutation ratio? This
is further inspired by a preliminary study we performed: we
fuzzed 8 applications for one hour with each of 1,000 distinct
mutation ratios from 0.001 to 1.000. We found that the number
of bugs found varies significantly over different mutation ratios.
Also the distribution of the number of bugs in 1,000 ratios
was indeed biased towards several mutation ratios, and the
best mutation ratio was different for each distinct program-
seed pair (§VI-B). This result provides evidence that adaptive
mutation ratio selection can benefit fuzzing efficiency. Hence,
the question is how to compute these mutation ratios.

In this paper, we introduce a system called SYMFUZZ,
which determines an optimal mutation ratio from a given
program-seed pair based on the probability of finding crashes.
SYMFUZZ augments black-box mutational fuzzing by leverag-
ing a white-box technique, which analyzes a program execution
to realize an effective mutation ratio for fuzzing. It then
performs traditional black-box mutational fuzzing with the
derived mutation ratio. Although the white-box technique often
entails heavy cost analysis, it is required only once per program-
seed pair as a preprocessing step.

The primary intuition of our work is that a desirable
mutation ratio that maximizes the fuzzing efficiency can be
deduced from the dependence relations between the input bits
of a seed for a program. Suppose we are given a program and a
96-bit seed that consists of a 32-bit magic number followed by
two consecutive 32-bit integer fields. We also assume that the
magic number is 4242424216 and two integer values are zero.
The program crashes when an input value satisfies the following
two conditions: (1) the magic number remains 4242424216;
and (2) the third field is negative integer. To trigger the crash,

2015 IEEE Symposium on Security and Privacy

© 2015, Sang Kil Cha. Under license to IEEE.

DOI 10.1109/SP.2015.50

725

2015 IEEE Symposium on Security and Privacy

© 2015, Sang Kil Cha. Under license to IEEE.

DOI 10.1109/SP.2015.50

725

one needs to flip the most significant bit in the third field, but
never touch the bits in the first field of the seed. The value of
the second field does not affect the crash. In this case, there
exists a dependence relation between the first and the third
field: the third field depends on the first field. That is, even
though we have a negative value for the third field, we will
never be able to trigger the crash if we flip any of the bits
in the first field. In this paper, we show that the dependence
between the input bits indeed decides the best mutation ratio
for this crash, which is about 0.031.

Throughout this paper, we use mutational fuzzing to refer
to a software testing technique that consists of the following
two steps. First, it generates test cases by flipping input bits
of a seed. Second, it evaluates a program under test using
the generated test cases to determine whether they crash the
program. We assume we know how to run the program under
test and what types of input seeds it takes. These pieces of
information are commonly available in security testing. We also
expect the mutation ratio to specify the number of bit positions
to flip in a seed input. In other words, a fuzzer chooses bit
positions at random without replacement when mutating a seed.
Finally, we consider only three fuzzing parameters including a
program, a seed, and a mutation ratio.

We evaluated our system on 8 Linux utilities on Debian 7.4
Wheezy (the version of May 2014). SYMFUZZ found 39.5%
more bugs than BFF [26]—the state-of-the-art scheduling-based
mutational fuzzer—on 8 applications. In total, we found 110
previously unknown distinct crashes using a stack hash that
we developed to reduce the false-positive rate of an existing
stack hash (§V-D).

Overall, this paper makes the following contributions:

1) We devise a mathematical framework to formalize muta-
tional fuzzing, and show how to model the failure rate of
mutational fuzzing with respect to the dependence relation
between input bits.

2) We introduce a novel method, called mutation ratio
optimization, to select a mutation ratio that maximizes the
probability of finding bugs.

3) We combine both black- and white-box techniques to
maximize the effectiveness of fuzzing. To the best of
our knowledge, we are the first in leveraging white-box
analysis in optimizing parameters for black-box fuzzing.

4) We design a mutational fuzzing framework, SYMFUZZ,
that implements our technique. This is the first mutational
fuzzer that admits an easy mathematical analysis.

5) We make our data and source code public in support of
open science.

The rest of this paper is organized as follows. §II sets out
the definitions and assumptions needed to our mathematical
model. §III then discusses how we obtain a list of candidate
mutation ratios. Next, §IV introduces our technique called input-
bit dependence inference. We then discuss detailed design of
our system in §V, and show evaluation of our system in §VI.
Finally, we present related works in §VIII, and summarize our
conclusion in §IX.

II. DEFINITION

A. Notation

We let an input, a.k.a. test case, be a bit string. In our
model, each input has a fixed length of N bits. An input space
IN denotes the universe of all possible inputs of size N bits.
Therefore, the cardinality of the input space |IN | is 2N . There
are inputs in the input space that trigger one or more program
bugs, which we call buggy inputs. We use a subscript to specify
a bit position in an input. For example, s1 means the first bit
of the input s. We denote the Hamming distance—the number
of bit differences in two input strings—between input i and j
in the input space by δ(i, j).

Definition 1 (K-Neighbors). A K-neighbor of an input i of
length N is an input whose Hamming distance from i is K.
We denote the set of all K-neighbors of i by NK(i):

NK(i) = {j ∈ {0, 1}N | δ(i, j) = K}.

Given the above definition, observe that two sets of K-
neighbors of the same input with a different value of K are
disjoint from each other:

∀i, 0 ≤ A,B ≤ N : NA(i) ∩NB(i) = ∅ ⇐⇒ A �= B.

We let μ be a function that takes as input a test case
and a set of bit positions, and returns a mutated test case
where every specified bit is flipped (exclusive-or-ed with 1)
from the given test case. For example, μ(s, {3, 4}) is an input
where both the third and the fourth bit of s are flipped, and
δ(μ(s, {3, 4}), s) = 2.

We represent an execution as a sequence of instructions.
Given a program p and a seed input s to the program, the
execution of p using s as an input is σp(s). An evaluation
function ε takes in a program execution and outputs either a
crash identifier when the program crashes, or ⊥ if otherwise. We
assume that a crash identifier uniquely determines the kind of
crashes; see §V-D for discussion on our crash triage technique
called safe stack hash. For instance, if a program p crashes
when we execute it with a test case i, then ε(σp(i)) = c, where
c is the crash identifier.

B. Input-Bit Dependence

We define dependence between input bits using control
dependence [2]. Informally, when a node u in a Control-Flow
Graph (CFG) decides if another node v is executed or not, then
we say v is control-dependent on u. We extend the notion of
control dependence to define the relationship between input
bits as follows.

Definition 2 (Input-Bit Dependence). Given an execution σp(s),
consider two bit positions x and y of s. We say that the bit

sx is dependent on sy, denoted by sx
dep(p)−−−−→ sy, if either

of the following conditions holds: (1) there is a conditional
branch that reads both sx and sy; (2) there are two conditional
branches c1 and c2 that read sx and sy respectively, and c1 is
control-dependent on c2.

Figure 1 demonstrates input-bit dependence for three

726726

{1,2,3,4}

. . .

. . .

(a) Bits 1, 2, 3, 4 are dependent each other.

{1}

{2}

. . .

(b) Bit 2 is dependent on bit 1.

{1}

{2}

. . .

(c) Bits 1 and 2 are independent.

Fig. 1: Input-bit dependence. Each gray box represents a conditional branch that is controlled by a set of input bit positions.

different cases. Figure 1a and Figure 1b show examples that
satisfy the first and the second condition of input-bit dependence
respectively. In Figure 1a, every bit involved in the same
condition is dependent on each other due to the first condition

of Definition 2: s1
dep(p)−−−−→ s1, s1

dep(p)−−−−→ s2, s1
dep(p)−−−−→

s3, s1
dep(p)−−−−→ s4, s2

dep(p)−−−−→ s1, · · · , s4 dep(p)−−−−→ s3, s4
dep(p)−−−−→

s4. In Figure 1b, s2
dep(p)−−−−→ s1. Finally, Figure 1c presents a

case where two input bits are not dependent on each other.

As an example, let us consider the following C program.

1 char x = i n p u t [0] ; char y = i n p u t [1] ;
2 i f (x > 42) {
3 i f (y > 42) {
4 . . . / * o m i t t e d * /

Given a program execution that exercises Line 4, the second
byte (bits 9 to 16) of the input is dependent on the first byte
(bits 1 to 8), all the bits in the first byte are dependent upon
each other, and all the bits in the second byte are dependent
upon each other.

Based on the definition of the input-bit dependence, we
can compute the set of dependency bits for each bit in a seed;
we use the term “dependency” in the same vein to the term
“library dependencies”. We call such a set as a dependency
bitset, and denote it with a function ↑. The upward arrow is
intended to reflect the direction of the dependence relation
in a CFG. For instance, ↑ps({3, 4}) is the set of bits that are
depended on either by s3 or by s4 in the execution σp(s).

Definition 3 (Dependency Bitset). Given a set of bit positions
X of a seed s for a program p, the dependency bitset of X is
defined as

↑ps(X) =

{
y

∣∣∣∣ x ∈ X, sx
dep(p)−−−−→ sy

}
.

Intuitively, we have defined input-bit dependence to reveal
the approximate syntactic structure of an input. Most input
structures consist of a series of input fields. For instance, a
PNG file has a series of data chunks each of which consists of
four input fields. Intuitively, every bit in an input field should
depend on each other, because all the bits together decide the

control-flow of the program. Indeed, a notion similar to input-
bit dependence has been used in recovering the format of an
input from a given program execution [32]. More precisely,
bits in a dependency bitset can be a superset of a bits in an
input field: input-bit dependence can involve multiple input
fields. In this paper, we use the input-bit dependence to infer
the optimal mutation ratio for mutational fuzzing (§III-B).

C. Mutational Fuzzing

Mutational fuzzing is a software testing technique where test
cases are derived from a seed—typically a well-formed input—
by partially mutating the seed. The number of bit mutations is
determined by a parameter called the mutation ratio r, which
is the rate between the number of bit positions to flip and
the total number of bit positions in a seed. We assume that
mutational fuzzing selects a set of bit positions at random
without replacement, and hence the Hamming distance between
an N -bit seed and a mutated input of it is always �N · r, i.e.,
r is always chosen such that N ·r is an integer. This is different
from all current fuzzers that use sampling with replacement.
See §V-C for more discussion on mutational fuzzing and its
implementation.

We view mutational fuzzing as a more targeted version of
random testing, which generates only test cases from a subspace
of the input space. The key assumption is that the distribution
of buggy inputs are often biased towards a subspace where
the inputs are not far from a seed in terms of the Hamming
distance. For example, a crashing test case for an MP3 player is
likely to be a nearly-valid MP3 file instead of being a random
string. If a random string is given, the program will likely reject
the input before it reaches a buggy code. More formally, we
define mutational fuzzing as follows.

Definition 4 (Mutational Fuzzing). Given a seed input s of
size N bits and a mutation ratio r, mutational fuzzing generates
and evaluates a set of test cases chosen uniformly at random
from NK(s), where K = �N · r.

We model each fuzz trial as a probabilistic experiment that
randomly selects a test case from an input space IN . Let Bp

N
be the set of N -bit buggy inputs for program p. Given a sample

727727

space IN , the probability of a randomly chosen input being in
Bp
N is the failure rate θ [13], which is defined as

θ =
|Bp

N |
|IN | =

|Bp
N |

2N
.

D. Failure Rate based on Mutation Ratio

In this paper, we are interested in finding a mutation ratio r
that maximizes the failure rate of mutational fuzzing. Therefore,
we need to represent the failure rate in terms of r. To do so,
we first categorize bit positions in a seed into several kinds,
and approximate the failure rate in terms of mutation ratio and
input-bit dependence.

Given a program p and a seed s, suppose the program
crashes when it is executed on a mutated s, i.e., there is an input
among the K-neighbors of s that triggers the crash. Specifically,
there is a set of bits in s that, when flipped, generates a buggy
input for p. We call such a set a buggy bitset of s.

Definition 5 (Buggy Bitset). Given a program p and an N -bit
seed s, a buggy bitset is a set of bit positions B ⊆ {1, 2, . . . , N}
where ε(σp(μ(s,B))) �= ⊥.

Some of the bits in a buggy bitset may not need to be
flipped to generate an input that triggers the bug. Among all
subsets of a buggy bitset, there exists a combination of bits
with a minimum cardinality while still producing a buggy input
for the same bug. We call such a subset a minimum buggy
bitset.1 Notice that there may be multiple minimum buggy
bitsets with the same size. Suppose there is an 8-bit seed,
and flipping both the first and second bits of the seed leads
a program p to crash. The buggy bitset is therefore {1, 2},
and ε(σp(μ(s, {1, 2}))) �= ⊥. Now, suppose flipping only the
second bit of the seed produces a buggy input that leads to the
same crash, i.e., ε(σp(μ(s, {1, 2}))) = ε(σp(μ(s, {2}))). Since
we assume that a seed does not produce a program crash by
itself, a minimum buggy bitset is {2}.
Definition 6 (Minimum Buggy Bitset). Given a buggy bitset
B for a program p and a seed s, a minimum buggy bitset B′
of B is an element of the set

argmin
{B∗⊆B|ε(σp(μ(s,B∗)))=ε(σp(μ(s,B)))}

|B∗| .

A minimum buggy bitset B′ includes a set of bits that must
be flipped to generate a buggy input. Any bit position other
than B′, i.e., any element of {1, 2, . . . , N}\B′, either (1) does
not affect the crash regardless of its values; or (2) thwarts the
crash when it is flipped. To find a set of bits that must not be
flipped for triggering the crash, we overapproximate a set of
bits that changes the program execution with respect to the bits
in B′, which is a dependency bitset of B′ by definition. If any
of the bits in ↑ps(B′) are flipped, it will change the execution
of the program. Since all the bits in B′ must be flipped, the
other bits in (↑ps(B′) \B′) must not be flipped to maintain the

1 Deriving a minimum buggy bitset is often called bug minimization [25].

same execution path for the crash.2

The above argument can be intuitively explained by an
example. A bug is typically triggered when one or more input
fields have specific values, e.g., one needs to set an integer
field to be greater than the size of a program buffer to trigger
a buffer overflow. However, even though the integer field has
a value greater than the buffer size, the program might take an
execution path that does not even read the values. This happens
when the program checks the value of another input field f
before it reaches the buffer overflow, and jumps to another
execution path. Therefore, the integer input field is dependent
on f . This is the key intuition of approximating the failure rate
of mutational fuzzing in terms of the input-bit dependence.

We now compute a failure rate for each minimum buggy
bitset. For simplicity, let b be the cardinality of a minimum
buggy bitset (b = |B′|), and let d be the cardinality of the
dependency bitset of B′ (d = |↑ps(B′)|). We also let r be the
mutation ratio. The failure rate of mutational fuzzing for B′
follows a multivariate hypergeometric distribution [7], where
the population size is N and the number of draws is (N × r).
Therefore, the failure rate of a minimum buggy bitset that has
b elements is:

θb =

(
b
b

)(
N−d
N ·r−b

)
(

N
N ·r

) =

(
N−d
N ·r−b

)
(

N
N ·r

) , when N · r ≥ b (1)

This formula can be explained as follows. Given an N -bit seed,
the total number of possible inputs that mutational fuzzing can
generate is

(
N
N ·r

)
. To generate a buggy input from a seed, we

need to flip all the bits in the minimum buggy bitset (this is
the

(
b
b

)
term), while not flipping the bits in the dependency

bitset of B′ (this is the
(

N−d
N ·r−b

)
term). Since

(
b
b

)
= 1, the term

can be eliminated.

The failure rate is only meaningful when the number of
flipped bits is not less than the size of B′, i.e., N · r ≥ b.
When N · r < b, we simply cannot flip every bit in B′. By
the definition of the minimum buggy bitset (Definition 6), one
needs to flip all the bits in B′ in order to generate a buggy
input. Therefore, the failure rate is effectively 0 in this case.

E. Mutation Ratio Optimization Challenge

Now that we have a formal definition of mutational fuzzing
and its failure rate, we address mutation ratio optimization
challenge as follows.

Definition 7 (Mutation Ratio Optimization Challenge). Given
a program p and an N -bit seed s, consider a crash that is
identified by a minimum buggy bitset B′, and let b = |B′|. The
mutation ratio optimization challenge is to derive a mutation
ratio r that maximizes the failure rate θb of p.

Notice the cardinality of a minimum buggy bitset (b) is not
known unless we have found the corresponding bug. Moreover,
we may have multiple optimal mutation ratios for different
values of b. Therefore, several questions remain: How do we
solve the mutation ratio optimization challenge? How do we

2 The dependency bitset of B′ is an over-approximation of the immutable
bit positions for the crash, because flipping some bits in (↑ps(B′) \ B′) may
still trigger the same crash.

728728

compute the cardinality of the dependency bitsets (d) for a
given program-seed pair? We address these questions in the
following sections.

III. MUTATION RATIO OPTIMIZATION

In this section, we introduce a systematic way of deciding a
set of mutation ratios for a given program and a seed, which we
call mutation ratio optimization. Our technique automatically
adapts to a given program-seed pair, and it enables efficient
bug finding for mutational fuzzing.

A. Solving for an Optimal Mutation Ratio

Recall in §II-D we described the failure rate θb of mutational
fuzzing with respect to three variables: the bit size of a seed
(N), the cardinality of a minimum buggy bitset (b), and the
cardinality of a dependency bitset of the minimum buggy bitset
(d). One of the primary challenges is to find a mutation ratio
0 < r ≤ 1 that maximizes θb. When d = b, i.e., B′ = ↑ps(B′),
it is trivial to show that the maximum failure rate is achieved
with r = 1: we simply let d = b and r = 1 from Equation 1,
and then the failure rate θb becomes always 1 regardless of
the value of b. When d = N , there is no bit position to flip
other than the ones in ↑ps(B′), and, as a result, the only way
to trigger the crash is to flip exactly b bit positions. That is,
the optimal mutation ratio is b/N . When b < d < N , we solve
the mutation ratio optimization problem by modeling it as a
classic nonlinear programming problem (NLP) [6] as follows.

For N, b, and d, find r to

maximize θb =

(
N−d
N ·r−b

)
(

N
N ·r

)
subject to (0 < r ≤ 1)

∧ (b < d < N)
∧ (b ≤ N · r ≤ N − d+ b).

The first constraint of the NLP is from the definition of
mutation ratio: mutation ratio must be between zero and one.
The second constraint (b < d < N) is to restrict the range of
the d value. When d = b, the optimal mutation ratio is 1, and
when d = N , the optimal mutation ratio becomes b/N as we
discussed above. The third constraint (b ≤ N · r ≤ N − d) is
due to our problem definition: (1) we should flip more than
the cardinality of a minimum buggy bitset in order to generate
an input that trigger the bug (b ≤ N · r); (2) we should not
flip any bits in (↑ps(B′) \B′), hence the maximum number of
bit flips is (N − d+ b).

We now solve the above NLP to obtain an optimal mutation
ratio for a given minimum buggy bitset. The solution to it is the
optimal mutation r with respect to b, d and N . See Appendix A
for a complete proof.

Theorem 1 (Optimal Mutation Ratio). Given a minimum buggy
bitset B′ and the corresponding ↑ps(B′) for a program p and
a seed s, let b = |B′| and d = |↑ps(B′)|. The optimal mutation

ratio r for finding the bug ε(σp(μ(s,B
′))) is

r =
b× (N + 1)

d×N
when N · r > b. (2)

We find an optimal mutation ratio r that maximizes the
failure rate as follows when b < d < N . First, when b =
N · r, we compute a failure rate θ1 by letting r = b/N from
Equation (1). Next, we obtain another mutation ratio r2 for the
case of b < N ·r using Equation (2). We then compute a failure
rate θ2 for r2 from Equation (1). Finally, we compare the two
failure rates and return an optimal mutation ratio as follows: if
θ1 is greater than θ2 then the optimal ratio is b/N ; otherwise it
is r2. We note, when computing r2, N is given from the seed,
but b and d are unknown. We know neither buggy bitsets nor
minimum buggy bitsets prior to fuzzing the program under test:
our goal is to pre-compute the optimal mutation ratio before
fuzzing. That is, we cannot know the corresponding minimum
buggy bitset before hitting a bug. This problem suggests that
we must find a way to estimate the value of b and d without
the prior knowledge about the buggy bitsets.

B. Estimating r

Suppose there exist M unique crashes that can be produced
by mutating an N -bit seed s for a program p. Since each crash
can have its own distinct minimum buggy bitsets, the value
of b and d may differ depending on the crash, and thus, each
crash may have different optimal mutation ratios. Ideally, one
may find a set of distinct mutation ratios for all M crashes,
but knowing exact b and d for every unique crash is infeasible
in practice.

To estimate effective mutation ratios in finding all M
crashes, we use the averaged values of b and d. Although
buggy bitsets are unknown in advance, we can still compute
dependency bitsets of every bit in the seed: we can obtain all
possible d values from the given program-seed pair, which
will expose the trend of the input-bit dependence of the seed.
We then use this information to estimate d. Let P(S) be the
powerset of S. We then denote d̄all as the average cardinality
of every possible dependency bitsets for the program-seed pair:

d̄all =

∑
x∈P({1,2,...,N}) |↑ps(x)|

2N
.

Recall from §II-B, the input-bit dependence indicates the
overall input structure for a given program-seed pair: it reveals
which chunk of the input bits together affects the control flow
of the program. Therefore, the average input-bit dependence
d̄all is an approximate indicator that shows how many bits
are dependent on each other for a given program-seed pair.
When d̄all is high, that means many input bits in the seed are
dependent on each other, and thus, there are likely to be more
input bits that should not be mutated to trigger the crashes.
That is, a larger d̄all corresponds to a smaller r and vice versa.
This relationship between d̄all and r is evident from the above
NLP formulation. The optimal mutation ratio ranges from b/N
(when d = N) to 1.0 (when d = b), and as we have smaller
d, i.e., less dependence between input bits, we have a higher
optimal mutation ratio.

Although d̄all shows the trend of input-bit dependence, there

729729

Algorithm 1: Computing d̄ using adaptive sampling.

input : A distribution of b values (β)
output : d̄

1 prevN ← 0
2 prevSum ← 0
3 while true do
4 b ← WeightedRand(N , β)
5 S ← RandomK(N , b)
6 newN ← prevN + b
7 newSum ← prevSum + |↑ps(S)|
8 if prevN �= 0 ∧ |newSum/newN− prevSum/prevN| < ε

then break
9 else prevN ← newN; prevSum ← newSum

10 end
11 return prevSum/prevN /* Returns d̄ */

are two remaining problems in using it. First, just averaging the
cardinality of all possible dependency bitsets is not necessarily
the best way to represent the trend, because the cardinality
of minimum buggy bitsets (b) may be biased towards several
values. Second, the number of dependency bitsets to consider
is exponential in N , and N is typically not small.

To mitigate both challenges, we incorporate the distribution
of b (β) into the average input-bit dependence by using adaptive
sampling [50], which also helps in computing an approximate
average efficiently. The algorithm is shown in Algorithm 1. First,
we select a random cardinality b with the probability associated
with each cardinality in β (Line 4, WeightedRand). Next, we
sample a set of random bit positions S of cardinality b (Line 5,
RandomK). RandomK takes in N and b, and returns b distinct
random numbers from the interval [1, N]. We then compute
|↑ps(S)|, and use the cardinality to compute a new cardinality
sum. Then, we check the difference between the previous and
the new mean values to see if it is smaller than a threshold ε
(Line 8). We repeat the process until the difference is negligible
(we use ε = 10−7 in our experiment). After breaking out of
the while loop, the algorithm returns the final average input-bit
dependence denoted as d̄.

Since d̄ relies on the distribution of b (β), it is important
to note how the distribution looks like. We obtained a large
scale fuzzing dataset from a previous work, and computed the
cardinality of minimum buggy bitsets for each unique crash
found in [44]. The average b value was 9 and the standard
deviation was 18. This result conforms to the observations from
practitioners [25]. See §VI-C for further discussion on how we
obtained b values from the dataset.

Now that we have a distribution of b values from a large-
scale experiment, we need to estimate r using the averaged
d value (d̄). Since d̄ is the average cardinality of dependency
bitsets per each bit in minimum buggy bitsets, we can estimate
the cardinality of a dependency bitset for a minimum buggy
bitset of cardinality b using b × d̄. By letting d = d̄ × b, we
can simplify the Equation 2 as follows.

r =
b× (N + 1)

b× d̄×N
=

1

d̄
· N + 1

N
. (3)

The value of b is now included in d̄, and we only need to

p ::= stmt∗
exp ::= get_input(src) | load(exp) | var

| exp ♦b exp | ♦u exp | v
stmt ::= var:= exp

| goto exp
| if exp then goto exp1 else goto exp2

| call exp
| ret exp
| store(exp,exp)

v ::= 〈unsigned integer, a set of affecting bits〉
♦b ::= binary operators
♦u ::= unary operators

TABLE I: A simple language for IBDI.

consider the value of d̄ to estimate the optimal mutation ratio
r. Given the distribution of b in crashes, d̄ provides a way to
estimate the cardinality of dependency bitsets for the crashes,
which, in turn, helps in estimating r.

IV. INPUT-BIT DEPENDENCE INFERENCE

At a high level, Input-Bit Dependence Inference (IBDI) is a
process of computing the input-bit dependences for every bit in
a seed from a program execution. We then use these dependence
relations to compute d̄ as in Algorithm 1. From the perspective
of program analysis, IBDI is a symbolic analysis that is more
specific than the traditional taint analysis [14, 42, 57], and more
abstract than the traditional symbolic execution [8, 27, 29]. Our
approach is inspired by several automatic input format recovery
approaches including [10, 16, 17, 32], where they share a
common theme as us: they use a program execution to reveal
the structure of an input. However, our focus is on figuring out
the input-bit dependence rather than precise input formats.

A. The Algorithm

Input-Bit Dependence Inference (IBDI) takes as input a
program and a seed, and outputs the input-bit dependence for
every bit of the seed. Similar to dynamic symbolic execution
[11, 22], IBDI runs the program under test both concretely and
symbolically. The key difference between IBDI and dynamic
symbolic execution is that IBDI operates on a set of dependent
bits instead of generating bit-vector-level path formulas, hence
it does not rely on SMT solvers [18]. As in dynamic symbolic
execution, IBDI introduces symbolic values whenever reading
from a user input, e.g., read system call. It then symbolically
evaluates program statements on a program execution. It also
constructs a CFG while symbolically executing the program in
order to compute control dependences between variables and
the corresponding input bits.

We describe our IBDI algorithm using the formal runtime
semantics over a simple language shown in Table I. In our
language, a program is a sequence of statements. There are
four different jump statements including goto, if-else,
call, and ret. The first two are regular jump statements:
goto is an unconditional jump statement, and if-else is
a conditional jump statement. The last two kinds, call and
ret, are special jump instructions that represent calls and

730730

Context Meaning
s a list of program statements
mc mapping from an address to concrete value
rc mapping from a variable to concrete value
ma mapping from an address to abstract value
ra mapping from a variable to abstract value
Δ current dependence predicate
c current input-dependence stack
l current delay queue
pc current program counter
i current statement

TABLE II: The execution context of our analysis.

returns respectively. Notice, however, we do not allow call/ret
instructions to implicitly manipulate call-stacks in our language.
For example, call instruction in x86 will be jitted into into
stack manipulation statements followed by a call statement.

Since we execute a program both concretely and symboli-
cally, expressions in our language evaluate to a value v, which
is a tuple of a concrete value and an abstract value. A concrete
value is an unsigned integer, and an abstract value is a set of
input bits that affects either directly or indirectly the value,
which is often called data lineage [32, 33]. We denote data
lineage of a variable as a set of bit positions. For example, if
a variable x evaluates to 〈1, {2, 3, 4}〉, it means the variable
x has a concrete value of 1, and is also affected by the three
other input bits.

We use ♦b to denote binary operators such as addition,
subtraction, etc. Similarly, ♦u represents unary operators such
as minus. When we evaluate ♦b over abstract values (data
lineages), we apply set union between them. For example,
when we evaluate a subtraction between {1} and {1, 2, 3, 4},
we obtain {1, 2, 3, 4}. For ♦u, we simply propagate abstract
values from a source to a destination.

The execution context of our analysis consists of ten fields
as shown in Table II. We store abstract and concrete values
for variables in ra and rc respectively in a map.3 Similarly,
we store abstract and concrete values of memory addresses
in ma and mc respectively in a map. To access maps, we
use a bracket notation. For example, ra[x] returns the current
abstract value of x, and rc[x← 1] returns a new map, which
is equivalent to the previous map except that the value of x
is 1. We use ⇓ to represent evaluation of an expression under
a given context. For example, mc, rc,ma, ra � e ⇓ v is an
evaluation of an expression e to a value v in the context given
as 4-tuples (mc, rc,ma, ra).

We encode the input-bit dependence for every bit in an input
using a data structure that we call dependence predicate (Δ).
The dependence predicate is essentially a map from a bit of an
input to a set of bit positions that the bit is dependent on. As we
execute the program under test, we update Δ using a merge
function. For example, suppose Δ has a mapping from the first
bit to {3, 4}. Then, merge(Δ, {1, 2}, {5, 6}) will return a new
dependence predicate which contains two mappings: (1) from

3 Variables at the machine-code level are really registers.

Algorithm 2: Dependence predicate update algorithm.

1 Function merge(Δ, X, Y)
2 Δ′ ← Δ
3 for x ∈ X do
4 Δ′ ← Δ′ [x← (Δ[x] ∪ Y \ {x})]
5 end
6 return Δ′
7 end

Algorithm 3: Delay queue update algorithm.

1 Function delayedUpdate(Δ, l)
2 for 〈X,Y 〉 ∈ l do
3 if 〈X,Y 〉 is not memoized then
4 Δ← merge(Δ, X, Y)
5 memoize 〈X,Y 〉
6 end
7 end
8 return 〈Δ, []〉
9 end

the first bit to {3, 4, 5, 6}, and (2) from the second bit to {5, 6}.
Algorithm 2 describes the merge function. Notice, in Line 4 of
the algorithm, we compute the relative complement of {x} in
order to exclude the dependence relations that self-referencing.

One may call the merge function for every instruction
encountered on the fly. However, we delay the predicate update
until we reach a return instruction—thus, update the dependence
predicate per control-dependent region [54]—for two reasons.
First, it is more cache-efficient to perform updates once in
a while. Second, we can employ a heuristic to eliminate
unnecessary updates: there are many duplicated updates, thus
we can memoize the last updates to speed up the process. To
perform delayed update, we employ an additional field in our
execution context, which we call a delay queue (l). l stores a
tuple of the current data lineage and the current set of dependent
bits from the control stack. To add an entry to a delay queue,
we use an add method.

We maintain an input-bit dependence stack (c) to store a set
of bit positions that the current instruction is control-dependent
on. The idea is similar to dynamic control-dependence analysis
in [54], but input-bit dependence stack maintains a set of control-
dependent bits instead of storing control-dependent statements.
We use three methods to access the input-dependence stack
(IDS): top() returns the top element of a stack, pop() returns a
tuple of the top element of a stack and a new stack without the
top element, and push(X) returns a new stack which contains
an additional element X .

Each element on the stack is a 2-tuple (an address of an
instruction that is beyond the scope of the current control
dependence, a set of control-dependent bits). In our analysis,
control dependence of a conditional branch is valid in two
scenarios: (1) until we reach an immediate post-dominator of
the conditional branch; (2) until we reach a return instruction.
Therefore, we need to update the input-bit dependence stack
either when we enter a function (call instructions), or when we
encounter a conditional branch. However, to efficiently handle

731731

vc = a concrete value from src va = {set of input bit positions}
mc, rc,ma, ra � get_input(src) ⇓ 〈vc, va〉 INPUT

mc, rc,ma, ra � var ⇓ 〈rc[var], ra[var]〉 VAR

mc, rc,ma, ra � e ⇓ 〈vc, va〉 v′c = mc[vc] v′a = ma[vc]♦bva

mc, rc,ma, ra � load e ⇓ 〈v′c, v′a〉 LOAD
mc, rc,ma, ra � e ⇓ 〈vc, va〉 v′c = ♦uvc

mc, rc,ma, ra � ♦ue ⇓ 〈v′c, va〉 UNARY-OP

mc, rc,ma, ra � e1 ⇓ 〈vc1, va1〉 mc, rc,ma, ra � e2 ⇓ 〈vc2, va2〉
mc, rc,ma, ra � e1♦be2 ⇓ 〈vc1♦bvc2, va1♦bva2〉 BINARY-OP

mc, rc,ma, ra � v ⇓ 〈v, {}〉 CONST

mc, rc,ma, ra � e ⇓ 〈vc, va〉 r′c = rc[var← vc]
r′a = ra[var← va]

c′ = checkIDS(c, pc) l′ = l.add(〈va, c′.top()〉) i = s[pc+ 1]

s,mc, rc,ma, ra,Δ, c, l, pc,var := e � s,mc, r
′
c,ma, r

′
a,Δ, c′, l′, pc+ 1, i

ASSIGN

mc, rc,ma, ra � e ⇓ 〈vc, va〉 c′ = checkIDS(c, pc) i = s[vc]

s,mc, rc,ma, ra,Δ, c, l, pc, goto e � s,mc, rc,ma, ra,Δ, c′, l, vc, i
GOTO

mc, rc,ma, ra � e ⇓ 〈1, va〉
mc, rc,ma, ra � e1 ⇓ 〈vc1, va1〉

c = checkIDS(c, pc)
c′ = updateIDS(c, pc, va)

l′ = l.add(〈va1 ∪ va, c
′.top()〉) i = s[vc1]

s,mc, rc,ma, ra,Δ, c, l, pc, if e then goto e1 else goto e2 � s,mc, rc,ma, ra,Δ, c′, l′, vc1, i
TRUE-COND

mc, rc,ma, ra � e ⇓ 〈0, va〉
mc, rc,ma, ra � e2 ⇓ 〈vc2, va2〉

c = checkIDS(c, pc)
c′ = updateIDS(c, pc, va)

l′ = l.add(〈va2 ∪ va, c
′.top()〉) i = s[vc2]

s,mc, rc,ma, ra,Δ, c, l, pc, if e then goto e1 else goto e2 � s,mc, rc,ma, ra,Δ, c′, l′, vc2, i
FALSE-COND

mc, rc,ma, ra � e ⇓ 〈vc, va〉 c = checkIDS(c, pc) c′ = c.push(〈pc+ 1, c.pop()〉) i = s[vc]

s,mc, rc,ma, ra,Δ, c, l, pc, call e � s,mc, rc,ma, ra,Δ, c′, l, vc, i
CALL

mc, rc,ma, ra � e ⇓ 〈vc, va〉 c′ = returnIDS(c, pc) 〈Δ′, l′〉 = delayedUpdate(Δ, l) i = s[vc]

s,mc, rc,ma, ra,Δ, c, l, pc, ret e � s,mc, rc,ma, ra,Δ
′, c′, l′, vc, i

RET

mc, rc,ma, ra � e1 ⇓ 〈vc1, va1〉
mc, rc,ma, ra � e2 ⇓ 〈vc2, va2〉 c′ = checkIDS(c, pc)

m′
c = mc[vc1 ← vc2]

m′
a = ma[vc1 ← va1♦bva2]

i = s[pc+ 1]

s,mc, rc,ma, ra,Δ, c, l, pc, store(e1, e2) � s,m′
c, rc,m

′
a, ra,Δ, c′, l, pc+ 1, i

STORE

Fig. 2: Operational semantics of input-bit dependence inference.

recursions, we use the same intuition as [54]: either when we
enter the same function more than once or when we have the
same immediate post-dominator, we replace the top element
of the stack instead of pushing a new one.

Algorithm 4 illustrates three major functions to access the
IDS. For every conditional branch, we call updateIDS to
register a control-dependent region [54] from a conditional
branch to an immediate post-dominator. For every return
statement, we call returnIDS to clear up the IDS. We also
update the IDS for every call instruction. Finally, we call
checkIDS for every statement to check whether we have
encountered the end of control-dependent region. When a CFG
is incomplete, i.e., indirect jumps, we might not be able to find
an immediate post-dominator. In this case, we use a conservative
approach: we always merge the current set of control-dependent
bits with the top element of the IDS.

We formulate the algorithm of input-bit dependence infer-
ence in an operational semantics in Figure 2. In the rule of
assignment statement, we highlight the delay queue update
using a box, because we optionally disable the function. In fact,
even though we do not update the delay queue in assignment

statements, we can still capture most of the input-bit dependence
conditional branches. If we do not take the input-bit dependence
for assignment statements, we may miss some dependence due
to implicit data flow [28].

B. Example

Figure 3 is our running example showing a typical PNG
parsing algorithm. It parses the first 8 characters using a series
of conditional branches—which is an unrolled version of a for
loop—from Line 2 to 14. It then reads the next 4 bytes as an
integer in Line 16, and checks the value in Line 17. Figure
3b shows a control flow of the program, where each node is
annotated with a line number of a branch instruction and a set
of input bits affecting the condition of the branch at runtime.
We use C to describe IBDI algorithm, but our system runs
on raw binary executables. Additionally, we represent input
positions in a byte-level granularity in our example for brevity.

Suppose we provide a valid PNG file to the parser, and
follow the execution path of 1, 2, 5, 8, 14, 16, 17, and 19.
On Line 1, Δ, l, and c are empty. When the first conditional
branch is encountered on Line 2, we check which input bytes

732732

Algorithm 4: Input-dependence stack update algorithm.

1 Function updateIDS(c, pc, va)
2 pd← immediate post-dominator of the current

instruction at pc
3 〈toppd, topdep〉 ← c.top()
4 if toppd = pd then
5 〈·, c〉 ← c.pop()
6 end
7 c′ ← c.push(〈pd, va ∪ topdep〉)
8 return c′
9 end

10 Function returnIDS(c, pc)
11 〈toppd, ·〉 ← c.top()
12 while c.isNotEmpty() ∧ toppd �= pc do
13 〈·, c〉 ← c.pop()
14 end
15 if c.isNotEmpty() then
16 〈·, c〉 ← c.pop()
17 end
18 return c
19 end
20 Function checkIDS(c, pc)
21 〈toppd, ·〉 ← c.top()
22 if c.isNotEmpty() ∧ toppd = pc then
23 〈·, c〉 ← c.pop()
24 end
25 return c
26 end

are affecting the condition. Since the first byte is affecting the
condition, we call updateIDS(c, 2, {1}), which first statically
expands the control flow from the instruction on Line 2, and
computes the immediate post-dominator of the instruction,
which is Line 14 in this case. Then it updates c to have an
element of 〈14, {1}〉. Next, we push the input byte information
〈{1}, {1}〉 into l, which represent a dependence relation from
the first byte to the first byte itself.4

On Line 5, we reach another conditional branch, which has
a condition affected by the second byte. Since the top element
of c has the same address as the immediate post-dominator of
the branch, we replace the top element of c with 〈14, {1, 2}〉
(due to Line 4-7 of updateIDS). The delayed queue is
also updated with the updated control-dependence, which
will call merge(Δ, {2}, {1, 2}) later in the delayedUpdate
function. Similarly, we update the delay queue and the IDS
until we reach the Line 14. Since the current instruction has
the same address as in the top element of the IDS, we pop
one element from the IDS (Line 23 of Algorithm 4), and then
we call delayedUpdate of Algorithm 3 to update Δ. After
executing Line 14, Δ has a mapping from each byte to the byte
positions that the byte is dependent on. To be more precise, Δ
should represent bit-level dependences, but we show byte-level
dependences for simplicity. We perform the similar steps along
the execution.

4 In a bit-level granularity, this represents the input-bit dependences between
the first eight input bits, where each of the bits is dependent on each other.

1 / * i n p u t read i n b u f * /
2 i f (buf [0] != ' \ x89 ') {
3 e r r o r () ;
4 } e l s e {
5 i f (buf [1] != ' \ x50 ') {
6 e r r o r () ;
7 } e l s e {
8 i f (buf [2] != ' \ x4e ') {
9 e r r o r () ;
10 } e l s e {
11 . . .
12 }
13 }
14 }
15 / * n e x t f i e l d * /
16 l e n = * ((* i n t 3 2)& buf [8]) ;
17 i f (l e n > PNG_MAX)
18 e r r o r () ;
19 . . .

(a) A PNG parser in C

1: entry

2: {1}

5: {2}

8: {3}

· · ·

17: {9, 10, 11, 12}

. . .

(b) A control-flow graph.

Line Δ c l

1 · · ·
2 · 〈14, {1}〉 〈{1}, {1}〉
5 · 〈14, {1, 2}〉 〈{1}, {1}〉;

〈{2}, {1, 2}〉

8 · 〈14, {1, 2, 3}〉
〈{1}, {1}〉;
〈{2}, {1, 2}〉;
〈{3}, {1, 2, 3}〉

14

1 �→ {1}
2 �→ {1, 2}
3 �→ {1, 2, 3}
· · ·

· ·

17

1 �→ {1}
2 �→ {1, 2}
3 �→ {1, 2, 3}
· · ·

〈19, {9, 10, 11, 12}〉 〈{9, 10, 11, 12},
{9, 10, 11, 12}〉

19

1 �→ {1}
2 �→ {1, 2}
3 �→ {1, 2, 3}
· · ·
9 �→ {9, 10, 11, 12}
10 �→ {9, 10, 11, 12}
· · ·

· ·

(c) The state transition table where each row is the execution context
after executing the corresponding line. For delay queue l, each item is
separated with a semicolon. The second column contains a mapping
from a byte position to a set of byte positions.

Fig. 3: A PNG parser example. We represent the input positions
using a byte-level granularity in this figure for brevity.

V. SYSTEM DESIGN

In this section, we describe SYMFUZZ, a system that
automatically finds an optimal mutation ratio for mutational
fuzzing based on the input-bit dependence inference. Figure 4
summarizes our system design, which consists of two major
components: symbolic analysis and mutational fuzzing. The
symbolic analysis module takes in a program and a seed, and
returns a recommended optimal mutation ratio. The mutational
fuzzing module then uses the mutation ratio to perform fuzzing,
and outputs buggy inputs found. Finally, we triage buggy inputs
using our safe stack hash technique described in §V-D.

733733

BugsTriage
Mutational

Fuzzing
Symbolic
Analysis

Mutation
Ratios

Program

Seed s

Fig. 4: SYMFUZZ architecture.

A. Implementation & Open Science

We base our system for input-bit dependence inference
on BAP [9], an open-source binary analysis framework. BAP
converts an x86 executable to an intermediate language suitable
for program analysis. SYMFUZZ consists of 5,300 lines of
OCaml for symbolic analysis and 1,600 lines of C++ code for
instrumentation. We leverage PIN [34] to instrument a target
binary. We also implement our mutational fuzzing framework
in about 1900 lines of OCaml and 700 lines of C++. In support
of open science, we release the source code of SYMFUZZ at
http://security.ece.cmu.edu/symfuzz/.

B. Symbolic Analysis

The symbolic analysis module implements the operational
semantics described in Figure 2 on top of the BAP [9]
intermediate language. We employ several optimizations to
our analysis including (1) tainted-block optimization, (2) JIT
and PD caching, and (3) set memoization.

First, we use the taint information of each basic block to
reduce the cost of symbolic analysis as follows. For each
instrumented basic block, we perform a lightweight taint
analysis. When a basic block does not involve any tainted
instructions, we do not perform the symbolic analysis, and
proceed to the next block. Notice our symbolic analysis
inherently provides precise taint information for each block.
Therefore, we do not need to maintain additional data structure
for storing taints. In fact, the data-lineage tracking [32, 33] part
of our symbolic analysis is more specific than the traditional
taint analysis [14, 42, 57], and more abstract than the traditional
symbolic execution [8, 27, 29].

Second, we employ several caches to improve the perfor-
mance. The JIT cache is to cache recently-used BAP ILs, and
the PD cache is to store the recently-computed immediate post-
dominator nodes. We note that expanding a static CFG for each
conditional branch to compute an immediate post-dominator
is an expensive operation compared to symbolic evaluation.
This is because it involves not only jitting but also recursive
disassembling and graph analysis.

Finally, we note that IBDI uses significant amount of
memory footprint, because each bit in a seed needs to store
a pointer to a set of bit positions, and each memory bit that
is touched by the program under test also stores such a set
for in ma. Although we perform byte-level analysis in our
implementation, this problem still remains. The crux of the
problem is that there can be multiple instances of the same set
representation. Therefore, we memoize every set throughout

the analysis, and make sure that there exists physically a single
distinct set throughout the analysis.

C. Mutational Fuzzing

It is important to discuss how to design an algorithm
for mutational fuzzing, because it is not straightforward as
it seems5, and none of the previous works discuss this problem.
For random fuzzing, there is a trivial O(N) algorithm, namely,
generating a random number between 0 and 2N − 1 using
a Pseudorandom Number Generator (PRNG) [36, 37], where
each bit takes O(1) time. However, designing an algorithm for
mutational fuzzing is not trivial, because we want to generate
only inputs in a K-neighbor of the input space for a fixed K.

Particularly, we need an ability to selecting test cases that
have the exact Hamming distance K from the seed s, for any
given K. This is equivalent to selecting K-bit positions from
the seed and flipping them, because flipping K bits results in
a test case i such that δ(i, s) = K.

This is the classic random k-subset selection problem. The
crux of the problem is to devise an algorithm to select K
elements at random from N bit positions. A straightforward
algorithm such as computing a random permutation and taking
the top K elements requires O(N) space and time complexity.
One might consider using reservoir sampling [52] to reduce
the space complexity to O(K), but it still requires O(N)
time complexity. There are several known algorithms that
have O(K) space complexity while requiring only O(K) time
complexity in expectation [4, 43]. In this work, we use Floyd-
Bentley’s algorithm [4, Algorithm F1] to compute the subset.
This algorithm outperforms permutation-based algorithms in
terms of both time and space complexity when K < N . Once
we obtain K random bits to modify from the Floyd-Bentley’s
algorithm, we simply flip the selected K bits (by XORing the
bits with s), and generate a new test case.

Someone may argue that the difference between random
mutation with or without replacement is negligible when the
input size is reasonably large, and it is even easier to analyze
the probability when we assume the random process with
replacement. However, note that the effect of using random
mutation with replacement can be significant in mutational
fuzzing as the mutation ratio does not precisely determine the
number of bits to be flipped. Of course, it is possible to use
a rejection sampling to resolve the problem, but the problem
becomes worse when the mutation ratio gets bigger, especially
when it is close to 1.0. Suppose the mutation ratio is 0.9, then
it is probabilistically infeasible to get the desired number of
bit flips with a rejection sampling.

D. Safe Stack Hash

Security practitioners use a call-stack trace or a part of a
call-stack trace [39], e.g., taking only top five entries of a full
stack-trace as in the fuzzy stack hash [41]. The rationale is
that if two crashes have the same call-stack traces, then they

5In fact, we are not aware of any practical fuzzers that implement exact
mutational fuzzing. For example, even calculating the exact number of bits
flipped by these fuzzers is difficult, because there is no closed-form expression
for their algorithm.

734734

Program #Crashes #Bugs Seed Size
(bits) Seed Type

abcm2ps 231,716 32 35,040 abc
autotrace 19,452 24 16,304 bmp
bib2xml 577 2 177,152 bib
catdvi 2,153,939 8 1,632 dvi
figtoipe 467,718 34 8,016 fig
gif2png 25,346 3 1,816 gif
pdf2svg 133 1 23,368 pdf
mupdf 39 6 23,368 pdf

Total 2,898,920 110

TABLE III: The ground truth data.

are likely to have an equivalent final program state, and thus,
it is an evidence of having the same root cause. This approach
works for many cases, but it exhibits a false bucketing problem:
it can put a single bug into multiple buckets.

We note that this false bucketing problem can significantly
increase the number of bugs found for fuzzing especially when
a buffer overflow mangles the return addresses on the stack.
For example, suppose a mutated input data overwrites a return
address of a call stack. The return address of the stack trace
may contain any arbitrary values due to the mutation. In the
worst case, we can have 232 distinct call-stack traces on 32-bit
machine just because of the mangled return address.

To mitigate this problem, we employ a technique, called
safe stack hash, which stops traversing the call stack when it
finds an unreachable return address. Specifically, we check for
each return address of a call-stack trace starting from the top,
i.e., the crashing stack frame, whether each return address falls
in a mapped page. If not, we assume that the stack is mangled
in the corresponding stack frame, and discard the rest of the
return addresses in the call-stack trace. We also use the same
heuristic as the fuzzy stack hash, and consider only the top
five stack entries when computing the hash. Notice the number
of bugs found from safe stack hash can only be less than the
one from regular stack hash techniques such as the fuzzy stack
hash. We implemented our safe stack hash using a GDB script
written in Python.

VI. EVALUATION

We now evaluate our system SYMFUZZ on 8 real-world
applications in order to answer the following questions.

1) Does it make sense to optimize the mutation ratio in
mutational fuzzing? How does the number of bugs differ
per mutation ratio? (§VI-B)

2) What is the cardinality of minimum buggy bitsets? Is the
conventional wisdom about choosing small mutation ratios
correct? (§VI-C)

3) How effective is it to use the SYMFUZZ’s adaptive strategy
in terms of number of bugs found? (§VI-D)

4) Does SYMFUZZ work well in practice? How many bugs
did we find compared to the practical fuzzers such as BFF,
zzuf, AFL-fuzz? (§VI-E)

A. Experimental Setup

We ran experiments on a private cluster consisting of 8
virtual machines. Each VM was running Debian Linux 7.4
on a single Intel 2.68 GHz Xeon core with 1GB of RAM,
and all the applications that we tested were up-to-date as of
May 2014. Each VM in our cluster was committed to only a
single application throughout the experiments. The number of
bugs reported from this paper is based on our safe stack hash
introduced in §V-D. We also make our source code publicly
available at http://security.ece.cmu.edu/symfuzz/.

Collecting Ground Truth. We ran the mutational fuzzing
module of SYMFUZZ individually to gather the ground-truth
data of mutational fuzzing. We initially obtained a list of 100
file-conversion applications of Debian as in [53], and manually
created a seed file for each application. We then fuzzed all 100
program-seed pairs with BFF [26] to know which programs
exhibit crashes. We found 8 programs that resulted in at least
one crash. We first ran our tool on each of the programs for
1,000 hours using 1,000 distinct mutation ratios from 0.001 to
1.000, i.e., 1 hour per each mutation ratio. Table III summarizes
our ground truth experiment. In total, we have spent 8,000
CPU hours fuzzing the applications, and found 110 previously
unknown bugs based on our safe stack hash. Since all the
applications that we tested read in an input file, all the bugs
found are potentially on the attack surface. For example, an
attacker can craft a malicious file and upload it to the Internet,
or send it as an email attachment in order to compromise users
that run the applications with the file. We leave it as future
work to check the exploitability of the bugs found [3, 12, 20].

B. Mutation Ratio Optimization

To justify our research, we first studied our ground truth data
from fuzzing, and measured how the effectiveness of fuzzing
changes with respect to the mutation ratio. We answer two
specific questions as follows. First, is it meaningful to optimize
the mutation ratio? Second, what is the potential benefit of
using an adaptive optimization for fuzzing?

1) Is Mutation Ratio Optimization Useful?: Optimizing
mutation ratio is useful when the result of fuzzing varies
significantly depending on a mutation ratio, and when there is
a clear bias in the distribution of mutation ratios in terms
of fuzzing efficiency. Figure 5a and Figure 5b illustrate
respectively the normalized number of bugs and crashes found
for each of the 8 programs in our ground truth dataset, that
is, the number of bugs (crashes) divided by the maximum
attainable number of bugs (crahses). Both figures show that
the effectiveness of fuzzing largely depends on the mutation
ratio. For example, we found the maximum number of bugs
from abcm2ps using the mutation ratio of 0.055, but did
not find any bug from the same program using the mutation
ratio of 0.281. However, using the mutation ratio of 0.055 on
bib2xml, we found no bug in our dataset.

We note that the optimal mutation ratios differ across the
programs. Figure 6 shows an empirically optimal mutation
ratio per program based on the number of bugs found. The
optimal ratios range from 0.002 to 0.055 depending on the
program under test. We also notice fuzzing efficiency is biased
towards the optimal mutation ratios from both the figures. Thus,

735735

0.0

0.5

1.0

0 1abcm2ps
0.0

0.5

1.0

0 1autotrace
0.0

0.5

1.0

0 1bib2xml
0.0

0.5

1.0

0 1catdvi

0.0

0.5

1.0

0 1figtoipe
0.0

0.5

1.0

0 1gif2png
0.0

0.5

1.0

0 1mupdf
0.0

0.5

1.0

0 1pdf2svg

(a) The normalized number of unique bugs found per mutation ratio.

0.0

0.5

1.0

0 1abcm2ps
0.0

0.5

1.0

0 1autotrace
0.0

0.5

1.0

0 1bib2xml
0.0

0.5

1.0

0 1catdvi

0.0

0.5

1.0

0 1figtoipe
0.0

0.5

1.0

0 1gif2png
0.0

0.5

1.0

0 1mupdf
0.0

0.5

1.0

0 1pdf2svg

(b) The normalized number of crashes found per mutation ratio.

Fig. 5: The effectiveness of fuzzing per mutation ratio evaluated over 1,000 mutation ratios from 0.001 to 1.000.

●

●

●

●

●

●

●

●

0.00

0.01

0.02

0.03

0.04

0.05

abcm2ps autotrace bib2xml catdvi figtoipe gif2png mupdf pdf2svg

O
pt

im
al

 M
ut

at
io

n
R

at
io

Fig. 6: Empirically best mutation ratios for 8 programs.

Optimal

0

20

40

60

80

0.00 0.25 0.50 0.75 1.00
ratio

#B
ug

s

Fig. 7: Comparison between a non-adaptive method, which
is to choose a single default mutation ratio, and an adaptive
(optimal) method, which is to select an empirically optimal
mutation ratio per program.

our data suggest that mutation ratio optimization is useful in
fuzzing.

2) How Much Better to Use Adaptive Optimization?: An
immediate follow-up question of the first question is: how much
better can adaptive optimization strategies be compared to non-
adaptive strategies? In particular, we want to know what is the
potential gain of using an adaptive strategy over non-adaptive
strategies such as selecting either (1) a single default mutation
ratio, or (2) multiple ratios at random from a given range. Both
the approaches are indeed employed in zzuf [30]. To answer
the question, we first computed the maximum possible number
of bugs that can be obtained by an optimal adaptive strategy for
each program from our dataset; it was 77. We then compared
this number against the number of bugs that can be found from
the non-adaptive strategies.

The first non-adaptive strategy we checked is to choose

a single default mutation ratio throughout an entire fuzzing
campaign. Figure 7 shows the comparison. For all the mutation
ratios in our dataset, the optimal adaptive strategy—represented
as the horizontal line at the top of the figure—always found
more bugs than the non-adaptive way. Moreover, even for the
best case of the non-adaptive strategy, which is to choose the
ratio of 0.028, the adaptive optimization found 18.5% more
bugs compared to the non-adaptive method. Additionally, we
notice that if we consider only a single mutation ratio per
program, even a perfect adaptive strategy can only find 77 bugs
out of 110 from our dataset. This result suggests the need for
inferring multiple instead of a single mutation ratio, although
this is outside the scope of this paper (see §VII for discussion).

The second strategy that we evaluated is to select a fixed
range of mutation ratios throughout a fuzzing campaign. We
used three different ranges suggested by the zzuf manual for
this comparison, namely, [0.00001, 0.01], [0.00001, 0.02], and
[0.00001, 0.10]. We fuzzed each application in our dataset for
1 hour with each of the ranges. In this experiment, we used
the same algorithm that zzuf employs for selecting mutation
ratios from a given range, which works as follows. We first
discretize the given range into a set of uniformly distributed
mutation ratios, where the cardinality of the set is 65,535. We
then select a mutation ratio from the set uniformly at random
for each fuzzing iteration. The best range was [0.00001, 0.02],
which results in 44 bugs from our dataset. This was indeed
57% less bugs than the optimal adaptive case. From the two
experiments, we conclude that optimizing the mutation ratio
benefits fuzzing in practice.

C. Distribution of b Values

In this subsection, we answer the following two questions.
First, how do we compute b from a crash? Second, what is the
distribution of b in crashes of real-world programs?

Recall from §III-B, we estimate an optimal mutation ratio
r using d̄, which depends upon the distribution of b values.
To obtain the distribution, we first collected 4,255 distinct
pairs of a crashing input and a seed from our previous study
[44]. The crashing inputs are gathered by fuzzing a variety of
applications that take in a file as an input for over 650 CPU
days. The size of the seeds in the dataset ranged from 43B

736736

0

500

1000

1500

0 50 100 150 200
of Minimum Buggy Bits (b)

#C
ra

sh
in

g
In

pu
ts

Fig. 8: The number of minimum buggy bits for 4,255 crashing
inputs derived from previous studies. The average was 9 and
the median was 6.

to 31MB, and the average seed size was 954KB. For each
crashing input, we computed the Hamming distance from them
to the corresponding seeds. The average Hamming distance was
151,721; the median was 11,430; and the standard deviation
was 862,055. Notice that the Hamming distance in this case
does not represent the size of a minimum buggy bitset: it
represents the size of a buggy bitset instead.

To compute the size of a minimum buggy bitset (b), we used
a delta debugging technique [15, 59] called bug minimization,
presented by Householder et al. [25]. The idea is simple: given
a crashing input and a corresponding seed, bug minimization
iteratively restores bits in the crashing input to the original
value of the seed, and determines which bit flips are necessary
to crash the program. After the minimization, we compute the
Hamming distance from each minimized crashing input to its
corresponding seed, which is essentially the value of b.

We used the above algorithm in order to compute the
distribution of b in the 4,255 distinct crashes that we collected.
Figure 8 shows the distribution of b values from our dataset.
We found that it is enough to flip 9 bits of a seed on average to
trigger crashes in our dataset. The median Hamming distance
was 6, and the standard deviation was 18. More than 80% of
the b values were less than or equal to 10. In addition, we
performed the same experiment on our ground truth data. As
a result, we obtained the Hamming distance of 5 on average
(median 3), and the standard deviation of the Hamming distance
was 10. The result shows that most of the crashes can be
triggered by flipping only few bits—less than a byte size in
our dataset—from the corresponding seeds.

How Many Bits to Flip? It is important to note that the
above result does not necessarily mean that we need to flip
only few bits of a seed to effectively trigger program crashes
in mutational fuzzing. For example, there may be an input field
that is independent from crashes: no matter what value the field
has, we can still crash the program. Therefore, in this case,
we want to flip more than b bits to increase the likelihood of
finding crashes. We indeed found the most number of bugs in
abcm2ps using a mutation ratio of 0.055, which corresponds
to about 2, 000 bit flips. This result highlights the key idea
of this paper: a good mutation ratio depends on the input-bit
dependence of a seed.

Program d̄
Seed Size

N
#Bugs Max.

#Bugs Diff.

abcm2ps 164 35,040 14 23 9
autotrace 69 16,304 13 15 2
bib2xml 484 177,152 2 2 0
catdvi 24 1,632 7 8 1
figtoipe 44 8,016 19 22 3
gif2png 144 1,816 2 3 1
pdf2svg 434 23,368 0 1 1
mupdf 201 23,368 3 3 0

TABLE IV: The number of bugs found with IBDI.

D. Estimating r

Recall from §III-B, the core part of SYMFUZZ is to derive
the average number of dependent bits (d̄) from a distribution
of b in estimating r. We used Algorithm 1 to compute d̄ and
obtained r for each program. Table IV summarizes the result.
The second column of the table shows d̄. The third column
of the table is the size of the seed N that is used for each of
the programs. The fourth column is the number of bugs found
using the obtained r for 1 hour of fuzzing. The fifth column
is the maximum attainable number of bugs in each program
for 1 hour of fuzzing when the empirically optimal mutation
ratio is selected. The last column is the difference between the
number of bugs found with SYMFUZZ and the optimal number
of bugs.

SYMFUZZ successfully estimated effective mutation ratios
for each program, and found 78% of the bugs that can be found
from the optimal adaptive strategy. Most mutation ratios that
we obtained was close to optimal mutation ratios except for
the case of abcm2ps. To investigate the problem, we first ran
bug minimization on every unique crash that we obtained for
abcm2ps. We then checked the cardinality of the minimum
buggy bitsets (b) for the crashes, and found that d̄ was 4×
greater than the average input-bit dependence for the minimum
buggy bitsets, which results in a smaller mutation ratio than
the optimal one. This is a corner case where buggy bits are
not close to the other bits in a seed, in which our algorithm
can perform poorly.

E. SYMFUZZ Practicality

In this subsection, we test the practicality of mutation ratio
optimization by comparing the number of bugs found with
existing mutational fuzzers such as BFF, zzuf, and AFL-fuzz.

1) Comparison against BFF and zzuf: The closest practical
mutational fuzzers in terms of the underlying mutation process
are BFF and zzuf: they use bit-flipping-based mutation for
fuzzing. We fuzzed each of the programs in our dataset for
1 hour using zzuf, BFF, and SYMFUZZ, and compared the
number of bugs found. To run zzuf, we used a single mutation
of 0.004, which is a default mutation. Notice BFF uses dynamic
scheduling algorithm to automatically find good mutation ratios
to use, whereas zzuf requires an analyst to specify either a
mutation ratio or a range of mutation ratios. In total, BFF found
43 bugs; zzuf found 38 bugs; and SYMFUZZ found 60 bugs. The
result indicates that SYMFUZZ’s adaptive strategy found 39.5%

737737

0

5

10

15

abcm2ps autotrace bib2xml catdvi figtoipe gif2png mupdf pdf2svg

#U
ni

qu
e

B
ug

s

bff

symfuzz

zzuf

Fig. 9: Final comparison in the number of bugs found.

and 57.9% more bugs than BFF and zzuf respectively. For
further analysis, we show a head-to-head comparison against
BFF and zzuf for each program in Figure 9. Notice that
SYMFUZZ found equal or more number of bugs compared
to BFF for most of the programs except abcm2ps, and found
39.5% more bugs in total.

2) Comparison against AFL-fuzz: AFL-fuzz [58] is the
state-of-the-art mutational fuzzer that is used by many security
practitioners. The mutation process of AFL-fuzz consists of
two major phases. First, it performs a series of deterministic
bit-flipping algorithms based on several heuristics. Second,
it uses a random combination of the algorithms in order to
non-deterministically generate test cases. These two steps are
applied for every seed during a fuzzing campaign. If any one
of the generated test cases exhibits a new execution path (based
on branch coverage), AFL-fuzz uses it as a new seed.

Since AFL-fuzz uses radically different mutation algorithms
than SYMFUZZ, we cannot directly compare the performance
of them. Instead, we replaced the first phase of AFL-fuzz
with SYMFUZZ’s mutation algorithm with mutation ratio
optimization, which allows us to compare the effect of using
our algorithm over their bit-flipping mutation algorithm. We
downloaded AFL-fuzz 1.45b for this experiment. We ran
both the modified AFL-fuzz and the original AFL-fuzz on
7 programs (excluding mupdf because AFL-fuzz does not
support GUI application) for 24 hours. After 24 hours of fuzzing
we triaged all the crashes found using our safe stack hash. As
a result, we found 54 bugs from the original AFL-fuzz, and 64
bugs from the modified AFL-fuzz. In other words, we found
18.5% more bugs by applying our technique on AFL-fuzz. We
also computed the branch coverage per time during the 24
hours of fuzzing. Figure 10 shows the coverage differences in
4 applications that present the most significant differences; we
did not observe significant coverage differences from the rest.
We conclude that AFL-fuzz can benefit from our technique.

VII. LIMITATION & FUTURE WORK

Statistical Significance. Currently, mutation ratios obtained
from our algorithm outperform previous fuzzers in our dataset.
However, the result may change with other applications that
have different statistical properties in terms of b and d values.
Furthermore, our ground truth dataset is based only on fuzzing
campaigns of one hour. Since fuzzing usually runs for several
weeks in practice, fuzzing longer would allow a stronger

3.5

4.0

4.5

5.0

0 20000 40000 60000 80000
Time (s)

C
ov

er
ag

e
(%

)

afl−mod

afl−orig

bib2xml

1.5

2.0

2.5

3.0

0 20000 40000 60000 80000
Time (s)

C
ov

er
ag

e
(%

)

afl−mod

afl−orig

catdvi

1.0

1.5

2.0

0 20000 40000 60000 80000
Time (s)

C
ov

er
ag

e
(%

)

afl−mod

afl−orig

figtoipe

10

15

20

25

0 20000 40000 60000 80000
Time (s)

C
ov

er
ag

e
(%

)

afl−mod

afl−orig

abcm2ps

Fig. 10: Branch coverage difference between AFL-fuzz and
modified AFL-fuzz (with mutation-ratio-based mutation logic).

conclusion. We leave fuzzing for more time as future work.

Multiple Mutation Ratios. Two distinct bugs can have signif-
icantly different d values, although our current strategy focuses
on finding a single d̄ from the overall average of d values.
This is a fundamental limitation of SYMFUZZ because we do
not know exact minimum buggy bitsets prior to fuzzing. One
potential future direction is to consider multiple d values and
perform scheduling over the derived mutation ratios.

Seed File. Currently, we assume a seed file for a program is
given by an analyst. This is a common assumption for most of
the fuzzers in practice. Recent work [44] partially addresses the
problem using a coverage-based inference. We leave combining
the seed selection algorithm with SYMFUZZ as future work.
Additionally, our analysis only analyzes a single execution
path based on a given seed. Therefore, it is possible to miss
several input-bit dependence relations that manifest only when
a different execution path is taken. Furthermore, our operational
semantics (§IV-A) do not differentiate bit-level operators such
as logical-AND from other operators. This may result in an over-
approximated results for our analysis, i.e., some bits may have
more dependent bits than it is supposed to be. Guaranteeing a
bit-level accuracy is out of scope of this work.

Input-Format-Aware Fuzzing. Although IBDI is inspired by
automatic input format recovery [10, 17, 32], our technique
currently does not leverage the input field information. One
may use the existing input format recovery techniques to find
a set of input fields, and mutate a set of specific input fields
instead of fuzzing the entire seed file. One potential research
direction is to derive the optimal time allocation for each of the
input fields in order to maximize the number of bugs found.

VIII. RELATED WORK

A. Automatic Reversing

Automatic input format recovery (reversing) is close to
IBDI in a sense that both techniques try to find the relationship
between input bits. However, IBDI does not try to recover the
exact structural format of the input. Instead, IBDI tries to find
the input-bit dependence to compute the optimal mutation ratio.
Several researches on automatic input format recovery use taint
analysis to recover the basic structure of an input [10, 16, 17].
Lin et al. [32] also combined the dynamic control dependence
analysis with data lineage tracing to reverse the input structure
from an execution trace. Their work is the closest previous

738738

work, but their algorithm is different from ours due to different
goals, e.g., they ignore binary operators in their algorithm.
There is also a static approach by Lim et al. [31]. We believe
automatic reversing and IBDI are complementary. For example,
if we are given an input format, one may be able to extract
dependence relation from the format by considering every bit
in a record field are dependent each other. One potential future
direction is to leverage existing input format recovery tools.

B. Combining White-Box and Black-Box

There are several approaches to combining multiple testing
techniques. Hybrid concolic testing [35] is the first attempt
in combining symbolic execution and mutational fuzzing. It
interleaves mutational fuzzing and concolic testing when there
is no more coverage increase with the hope that it can discover
novel execution paths. In contrast, IBDI uses a white-box
analysis as a pre-processing step of a black-box testing. Yang
et al. [55] attempted to use symbolic execution to figure
out which input vectors are related. Then they utilized this
information to perform combinatorial testing. Unlike their
approach, IBDI uses an abstract analysis that does not require
an SMT solver, and focuses on the dependence relationship
between input bytes.

C. Fuzzing

The term fuzz testing (fuzzing) was coined in the 90s [38]
to mean a software testing technique that executes the program
under test using a series of random inputs. Since then, the
term has been overloaded to mean different types of testing
techniques including mutational fuzzing and grammar-based
fuzzing. Our main focus is on mutational fuzzing. Most of
existing mutational fuzzing algorithms [1, 19, 23, 30, 46, 58]
rely on ad-hoc heuristics, which make it hard to mathematically
model and analyze them. For example, zzuf [30] uses an
arbitrary interval to discretize a continuous parameter such
as mutation ratio, and notSPIKEfile [23] utilizes a predefined
list of string tokens to construct and mutate inputs. One of our
contributions is that we designed the first mutational fuzzer
which we can mathematically analyze.

Grammar-based fuzzing (a.k.a. generation-based fuzzing)
[21, 24, 40, 45, 56] is another class of fuzzing, which differs
from mutational fuzzing since it does not require a seed file.
Instead, it generates test cases from a given input specification,
e.g., network or file format. Grammar-based fuzzing shares
the common theme as mutation ratio optimization: exploit the
knowledge about the input structure. We leave it as future
work to study the opportunities of applying our technique to
grammar-based fuzzing.

IX. CONCLUSION

We designed an algorithm to optimize the mutation ratio in
mutational fuzzing given a program and a seed. In particular, we
introduced SYMFUZZ, which runs both black- and white-box
analysis to find bugs in a program. We also have formulated
the failure rate of mutational fuzzing in terms of the input-bit
dependences among bit positions in an input. Our mathematical
model led us to design a novel technique for mutation
ratio optimization, which estimates a probabilistically optimal

mutation ratio from an execution trace. With our data set, we
showed that SYMFUZZ can find 39.5% more bugs than BFF
and 57.9% more bugs than zzuf in the same amount of fuzzing
time. We have also applied our technique to improve AFL-fuzz.
With our modifications, AFL-fuzz was able to find 18.5% more
bugs in the same 24-hour experiment.

ACKNOWLEDGEMENT

We thank Thanassis Avgerinos for encouragement and
fruitful discussions. This work was supported in part by
grants from the National Science Foundation under grant CNS-
0720790 and the Department of Defense under Contract No.
N66001-13-2-4040. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect those of the sponsor.

APPENDIX A
SOLVING NLP

Recall from §III-A, we solve the NLP problem to optain
an optimal mutation ratio for a given minimum buggy bitset.

Theorem 1 (Optimal Mutation Ratio). Given a minimum buggy
bitset B′ and the corresponding ↑ps(B′) for a program p and
a seed s, let b = |B′| and d = |↑ps(B′)|. The optimal mutation
ratio r for finding the bug ε(σp(μ(s,B

′))) is

r =
b× (N + 1)

d×N
when N · r > b. (2)

Proof: The goal of the NLP is to maximize the following
failure rate

θb =

(
N−d
N ·r−b

)
(

N
N ·r

) .

For simplicity, we let u to denote N · r − b, and v to denote
N − d. Then the failure rate is simplified as follows.(

v
u

)
(

N
u+b

) .
By expanding the binomial coefficients, we have(

v
u

)
(

N
u+b

) =

v!
u!(v−u)!

N !
(b+u)!(N−u−b)!

=
v!(b+ u)!(N − b− u)!

u!(v − u)!N !
.

When u = 1, the failure rate is

v!(b+ 1)!(N − b− 1)!

1!(v − 1)!N !
.

When u = 2, the failure rate is

v!(b+ 2)!(N − b− 2)!

2!(v − 2)!N !
.

We note that, as we increase u by one, the failure rate increases
by the factor of

(v − u+ 1)(b+ u)

u(N − b− u+ 1)
when u > 0.

Since the factor monotonically decreases in terms of u, the

739739

maximum failure rate can be achieved when the factor becomes
1. This relaxation gives us the maximum failure rate when

(v − u+ 1)(b+ u)

u(N − b− u+ 1)
= 1 when u > 0.

Solving the equation with respect to u, we have

u =
b(v + 1)

N − v
when u > 0.

Since u = N · r − b and v = N − d, we can further simplify
the equation with respect to the mutation ratio r:

r =
b× (N + 1)

d×N
when N · r > b.

REFERENCES

[1] P. Amini, A. Portnoy, and R. Sears, “Sulley,”
https://github.com/OpenRCE/sulley.

[2] A. Appel, Modern Compiler Implementation in ML.
Cambridge University Press, 1998.

[3] T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz,
M. Woo, and D. Brumley, “Automatic Exploit
Generation,” Communications of the ACM, vol. 57, no. 2,
pp. 74–84, Feb. 2014.

[4] J. Bentley and B. Floyd, “Programming Pearls: A
Sample of Brilliance,” Communications of the ACM,
vol. 30, no. 9, pp. 754–757, 1987.

[5] D. A. Berry and B. Fristedt, Bandit Problems: Sequential
Allocation of Experiments. Chapman and Hall, 1985.

[6] D. P. Bertsekas and D. P. Bertsekas, Nonlinear
Programming, 2nd ed. Athena Scientific, 1999.

[7] Y. M. Bishop, S. E. Fienberg, and P. W. Holland,
Discrete Multivariate Analysis: Theory and Practice.
Cambridge: MIT Press, 1975.

[8] R. S. Boyer, B. Elspas, and K. N. Levitt, “SELECT—A
Formal System for Testing and Debugging Programs by
Symbolic Execution,” ACM SIGPLAN Notices, vol. 10,
no. 6, pp. 234–245, Apr. 1975.

[9] D. Brumley, I. Jager, T. Avgerinos, and E. Schwartz,
“BAP: A Binary Analysis Platform,” in Proceedings of
the International Conference on Computer Aided
Verification, 2011, pp. 463–469.

[10] J. Caballero, H. Yin, Z. Liang, and D. Song, “Polyglot:
Automatic Extraction of Protocol Message Format using
Dynamic Binary Analysis,” in Proceedings of the ACM
Conference on Computer and Communications Security,
2007, pp. 317–329.

[11] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted
and Automatic Generation of High-Coverage Tests for
Complex Systems Programs,” in Proceedings of the
USENIX Symposium on Operating System Design and
Implementation, 2008, pp. 209–224.

[12] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley,
“Unleashing Mayhem on Binary Code,” in Proceedings of
the IEEE Symposium on Security and Privacy, 2012, pp.
380–394.

[13] T. Y. Chen and Y. T. Yu, “On the Relationship Between
Partition and Random Testing,” IEEE Transactions on

Software Engineering, vol. 20, no. 12, pp. 977–980,
1994.

[14] J. Clause, W. Li, and A. Orso, “Dytan: A Generic
Dynamic Taint Analysis Framework,” in Proceedings of
the International Symposium on Software Testing and
Analysis, 2007, pp. 196–206.

[15] H. Cleve and A. Zeller, “Locating Causes of Program
Failures,” in Proceedings of the International Conference
on Software Engineering, 2005, pp. 342–351.

[16] P. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda,
“Prospex: Protocol Specification Extraction,” in
Proceedings of the IEEE Symposium on Security and
Privacy, 2009, pp. 110–125.

[17] W. Cui, M. Peinado, K. Chen, H. J. Wang, and
L. Irun-Briz, “Tupni: Automatic Reverse Engineering of
Input Formats,” in Proceedings of the ACM Conference
on Computer and Communications Security, 2008, pp.
391–402.

[18] L. De Moura and N. Bjørner, “Satisfiability Modulo
Theories: Introduction and Applications,”
Communications of the ACM, vol. 54, no. 9, pp. 69–77,
2011.

[19] M. Eddington, “Peach Fuzzing Platform,”
http://peachfuzzer.com/.

[20] J. Foote, “CERT Linux Triage Tools,” http://www.cert.
org/blogs/certcc/2012/04/cert_triage_tools_10.html.

[21] P. Godefroid, A. Kiezun, and M. Y. Levin,
“Grammar-based Whitebox Fuzzing,” in Proceedings of
the ACM Conference on Programming Language Design
and Implementation, 2008, pp. 206–215.

[22] P. Godefroid, M. Y. Levin, and D. A. Molnar,
“Automated Whitebox Fuzz Testing,” in Proceedings of
the Network and Distributed System Security Symposium,
2008, pp. 151–166.

[23] A. Greene, “notSPIKEfile,”
http://www.securiteam.com/tools/5NP031FGUI.html.

[24] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with Code
Fragments,” in Proceedings of the USENIX Security
Symposium, 2012, pp. 445–458.

[25] A. D. Householder, “Well There’s Your Problem:
Isolating the Crash-Inducing Bits in a Fuzzed File,”
CERT, Tech. Rep. CMU/SEI-2012-TN-018, 2012.

[26] A. D. Householder and J. M. Foote, “Probability-Based
Parameter Selection for Black-Box Fuzz Testing,” CERT,
Tech. Rep. CMU/SEI-2012-TN-019, 2012.

[27] W. Howden, “Methodology for the Generation of
Program Test Data,” IEEE Transactions on Computers,
vol. C-24, no. 5, pp. 554–560, 1975.

[28] M. G. Kang, S. McCamant, P. Poosankam, and D. Song,
“DTA++: Dynamic Taint Analysis with Targeted
Control-Flow Propagation,” in Proceedings of the
Network and Distributed System Security Symposium,
2011.

[29] J. C. King, “Symbolic execution and program testing,”
Communications of the ACM, vol. 19, no. 7, pp.
385–394, 1976.

[30] C. Labs, “Zzuf: Multi-Purpose Fuzzer,”
http://caca.zoy.org/wiki/zzuf.

[31] J. Lim, T. Reps, and B. Liblit, “Extracting Output
Formats from Executables,” in Proceedings of the

740740

Working Conference on Reverse Engineering, 2006, pp.
167–178.

[32] Z. Lin and X. Zhang, “Deriving Input Syntactic
Structure from Execution,” in Proceedings of the
International Symposium on Foundations of Software
Engineering, 2008, pp. 83–93.

[33] Z. Lin, X. Zhang, and D. Xu, “Convicting Exploitable
Software Vulnerabilities: An Efficient Input Provenance
Based Approach,” in Proceedings of the International
Conference on Dependable Systems Networks, June 2008,
pp. 247–256.

[34] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood,
“Pin: building customized program analysis tools with
dynamic instrumentation,” in Proceedings of the ACM
Conference on Programming Language Design and
Implementation, 2005, pp. 190–200.

[35] R. Majumdar and K. Sen, “Hybrid Concolic Testing,” in
Proceedings of the International Conference on Software
Engineering, 2007, pp. 416–426.

[36] G. Marsaglia, “Xorshift RNGs,” Journal of Statistical
Software, vol. 8, no. 14, pp. 1–6, 2003.

[37] M. Matsumoto and T. Nishimura, “Mersenne Twister: A
623-dimensionally Equidistributed Uniform
Pseudo-random Number Generator,” ACM Transactions
on Modeling and Computer Simulation, vol. 8, no. 1, pp.
3–30, 1998.

[38] B. P. Miller, L. Fredriksen, and B. So, “An Empirical
Study of the Reliability of UNIX Utilities,”
Communications of the ACM, vol. 33, no. 12, pp. 32–44,
1990.

[39] C. Miller, “Babysitting an Army of Monkeys,” in
CanSecWest, 2010. [Online]. Available: http://fuzzinginfo.
files.wordpress.com/2012/05/cmiller-csw-2010.pdf

[40] C. Miller and Z. N. J. Peterson, “Analysis of Mutation
and Generation-Based Fuzzing,” Independent Security
Evaluators, Tech. Rep., 2007.

[41] D. Molnar, X. C. Li, and D. A. Wagner, “Dynamic Test
Generation to Find Integer Bugs in x86 Binary Linux
Programs,” in Proceedings of the USENIX Security
Symposium, 2009, pp. 67–82.

[42] J. Newsome and D. Song, “Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature Generation
of Exploits on Commodity Software,” in Proceedings of
the Network and Distributed System Security Symposium,
2005.

[43] A. Nijenhuis and H. S. Wilf, Combinatorial Algorithms
for Computers and Calculators, 2nd ed., ser. Computer
Science and Applied Mathematics. Academic Press,
1978.

[44] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren,

G. Grieco, and D. Brumley, “Optimizing Seed Selection
for Fuzzing,” in Proceedings of the USENIX Security
Symposium, 2014, pp. 861–875.

[45] J. Ruderman, “jsfunfuzz,” http://blog.mozilla.org/security/
2007/08/02/javascript-fuzzer-available/, 2007.

[46] M. Sutton, “FileFuzz,” http://osdir.com/ml/security.
securiteam/2005-09/msg00007.html.

[47] M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute
Force Vulnerability Discovery. Addison-Wesley

Professional, 2007.
[48] A. Takanen, J. D. Demott, and C. Miller, Fuzzing for

Software Security Testing and Quality Assurance.
Artech House, 2008.

[49] C. S. Team, “Clusterfuzz,”
https://code.google.com/p/clusterfuzz/.

[50] S. K. Thompson and G. A. F. Seber, Adaptive Sampling.
Wiley, 1996.

[51] P. Uhley, “A Basic Distributed Fuzzing Framework for
FOE,” https://blogs.adobe.com/security/2012/05/
a-basic-distributed-fuzzing-framework-for-foe.html.

[52] J. S. Vitter, “Random sampling with a reservoir,” ACM
Transactions on Mathematical Software, vol. 11, no. 1,
pp. 37–57, 1985.

[53] M. Woo, S. K. Cha, S. Gottlieb, and D. Brumley,
“Scheduling Black-box Mutational Fuzzing,” in
Proceedings of the ACM Conference on Computer and
Communications Security, 2013, pp. 511–522.

[54] B. Xin and X. Zhang, “Efficient Online Detection of
Dynamic Control Dependence,” in Proceedings of the
International Symposium on Software Testing and
Analysis, 2007, pp. 185–195.

[55] J. Yang, H. Zhang, and J. Fu, “A Fuzzing Framework
Based on Symbolic Execution and Combinatorial
Testing,” in IEEE International Conference on and IEEE
Cyber, Physical and Social Computing, 2013, pp.
2076–2080.

[56] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and
Understanding Bugs in C Compilers,” in Proceedings of
the ACM Conference on Programming Language Design
and Implementation, 2011, pp. 283–294.

[57] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda,
“Panorama: Capturing System-wide Information Flow for
Malware Detection and Analysis,” in Proceedings of the
ACM Conference on Computer and Communications
Security, 2007, pp. 116–127.

[58] M. Zalewski, “American Fuzzy Lop,”
http://lcamtuf.coredump.cx/afl/.

[59] A. Zeller, “Isolating Cause-effect Chains from Computer
Programs,” in Proceedings of the International
Symposium on Foundations of Software Engineering,
2002, pp. 1–10.

741741

